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Abstract

We describe STELLA,L a strongy typed, objed-oriented,
Lisp-like languege, designed to fadlitate symbalic
programming tasks in artificia intelligence gplicaions.
STELLA preserves those fegures of Common Lisp deaned
essentia for symbalic programming such as built-in suppat
for dynamic data structures, heterogeneous colledions, first-
class ymbals, powerful iteration constructs, name spaces,
an olhjed-oriented type system with a meta-objed protocol,
exception handling, and languege etensibility through
maaos, but withou compromising exeaution speed,
interoperability with nonrSTELLA programs, and gatform
independence. STELLA programs are trandated into a
target language such as C++, Common Lisp, or Java, and
then compiled with the native target language compiler to
generate exeautable wde. The language nstructs of
STELLA are restricted to those that cen be trandated
direaly into native @nstructs of the intended target
languages, thus enabling the generation o highly efficient
aswell asreadable amde.

Introduction
From its inception abou 40 yeas ago, Lisp was intended
spedficdly to suppat the writing d artificial intelligence
(Al) software (McCarthy 1981), and it has been ore of the
most popuar Al programming languages ever since
However, despite its high level of maturity, for example,
the eistence of standards for major dialeds such as
Common Lisp and Scheme ad the emergence of an
international standard for ISLISP, it has not become a
mainstrean programming language such as C, C++ or,
lately but quickly, Java. Thisis one of the ressonswhy it is
generally difficult to deliver Lisp libraries or applicaions
that smoothly interoperate with standard nonLisp
software, such as, for example, GUI tods, commercial off-
the-shelf software, tod libraries, etc. Other reasons are the
technicd nature and size of Lisp implementations (in
particular for feaure-rich daleds sich as Common Lisp),
as well asthe ladc of Lisp knowledge in the general non
Al programming community. Balzer (1990 conjedures
that Al' sladc of impad onred world software engineering
is due to its isolationist techndogy and approades
manifested by its use of idiosyncratic languages (Lisp),

lesTELLA" isan aaonym for Strongly TypEd Lisp-like L Anguage.

idiosyncratic environments, and idiosyncratic hardware
(now extinct Lisp madhines).

From the standpdnt of Al this is very unfortunate,
since, on the one hand, Lisp is extremely well suited for
symbalic programming tasks commonly foundin Al. For
example, Shrobe (1996 argues that the Al community still
needs Lisp because of its dynamic nature ad rich
development environments that fadlit ate rapid prototyping,
as well as for its unique suppat for creaing and
embedding rew domain or problem-spedfic languages. On
the other hand, the success of Al as perceved ouside of
the field is more and more linked to the successul fielding
of Al techndogyin nontAl settings, and, sincethis siccess
depends heavily onthe technicd and commercial viability
of the programming languages used, we daim that Lisp is
anincreasingly less sitable doice

When the second author embarked on the projed of
developing a large knowledge representation system that
had to be delivered in C++, he was facel exadly with the
dilemma described above: the symbodlic programming
nature of the projed strondy favored Common Lisp while
“red world” constraints demanded C++. The solution was
the development of a new language cdled STELLA, which
preserves those feaures of Common Lisp deemed essential
for symbadlic programming, but withou compromising
exeaution sped, interoperability with nonSTELLA
programs, and datform independence

The motivation for the development of the language
Dylan (Shalit 1996 was very similar, namely, to preserve
the best fedures of Common Lisp withou compromising
the aility to generate tight and efficient application
programs. Scott Fahlman who hes been involved in the
development of Common Lisp as well as Dylan writes that
“if Dylan beacomes popuar for mainstream applicdions, it
will free Al and expert system programmers from having
to choose between life in the Lisp ghetto o the C++
minefield” (Shrobe eta. 1996 p.12). But the questionis:
will it become popuar?

We do nd venture a bet on the aswer to this
guestion. Instead, STELLA takes a safer approach by wsing
atrandation scheme that can deliver STELLA programsin
three dready established and widely accepted languages.
Even if STELLA does not bemme amainstream languege
—whichisquitelikely —it can till deliver onits promise of
making Al applicaions available to the programming
mainstream in away that was not previously possble.
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Figure 1: STELL A system architedure

An Overview of STELLA

STELLA is a strongy typed, objed-oriented, Lisp-like
language. STELLA programs are first trandated into
either Common Lisp, C++, or Java, and then compil ed with
any conventional compiler for the chosen target language
to generate exeautable amde. Figure 1 gives an owerview of
the STELLA system architedure. Over 95% of the
STELLA system is written in STELLA itself, which is the
reason for the drcular arc emanating from the trandator.

The design d STELLA borrows from a variety of
programming languages, most prominently from Common
Lisp (Stede 1990, and to a lessr degree from other
objed-oriented languages auch as Eiffel (Meyer 1992,
Sather (Stoutamire & Omohundo 1996, and Dylan (Shalit
1996. Since STELLA has to be trandatable into C++
(Stroustrup 1991 and Java (Gosling, Joy, & Stede 1996,
various restrictions of these languages also influenced its
design.

In the following, we asaume that the reader is famili ar
with basic Common Lisp concepts, and hes at least some
famili arity with C++ or Java. Let us dart with a airsory
overview of STELLA’s main feaures:

Syntax: STELLA wuses a parenthesized, uniform
expresson syntax similar to Lisp. Most definitiona
constructs and control structures are similar to their
Common Lisp analogues with variations to suppat types.
Type system: STELLA is grondy typed and suppats
efficient static compilation similar to C++. Types are
required for the aguments and return values of functions
and methods, for global variables, and for dot definitions.
Locd, lexicdly scoped variables can be typed implicitly by
relying ontype inference

Object system: Types are organized into a single
inheritance dasshierarchy. Restricted multiple inheritance

is alowed via mixin classes. Dynamic method dspatch is
based onthe runtime type of the first argument (similar to
C++ and Java). Slots can be static (native) or dynamic.
Dynamic slots can be defined at runtime and do nd occupy
any spaceurntil they are filled. Slots can have bath initial
and default values, and demons can be triggered by slot
accesss. A meta-objed protocol alows the wntrol of
objed credion, initiali zaion, termination, and destruction.
Control structure: Functions and methods are
distingushed. They can have multiple (zero o more)
return values and a variable number of arguments. Lisp-
style maaos are suppated to fadlit ate syntax extensions.
Expressons and statements are distingushed. Locd
variables are lexicdly scoped, but dynamicdly scoped
variables (spedals) are dso suppated. STELLA has an
elegant, uniform, and efficient iteration mechanism plus a
built-in protocol for iterators. An exception mechanism can
be used for error handling and non-locd exits.

Symbolic programming: Symbads are first-class objeds,
and extensive suppat for dynamic datatypes such as cons-
trees, lists, sets, asciation lists, hash tables, extensible
vedors, etc., is avalable. A badkquae mechanism
fadlit ates maao writing and code generation. Interpreted
function cdl, method cdl, dot access and oljed creaion
is suppated, and arestricted evaluator is also avail able.
Name spaces. Functions, methods, variables, and classes
occupy separate hame spaces (i.e., the same name can be
used for a function and a das9. A hierarchicd module
system compartmentalizes gymbal tables and suppats
large-scd e programming.

Memory management: STELLA relies on automatic
memory management via a garbage wlledor. For Lisp
and Java the native garbage olledor isused. For the C++
verson o STELLA we use the Boehm-Weiser
conservative garbage wlledor (Boehm 1993 with good
results. Various built-in suppat for explicit memory
management is also avail able.

The Common Lisp feaures most prominently absent
from STELLA are anonymous functions via | anbda
abstradion, lexicd closures, multi-methods, full-fledged
eval (a restricted evaluator is available), optional and
keyword arguments, and a modifiable readtable. STELLA
does also na alow dynamic re/definition o functions and
clases, even though the Lisp-based development
environment provides this fadlity (similar to Dylan). The
main influences of C++ and Java onto STELLA are the
strong typing, limited multiple inheritance, first-argument
polymorphism, and the distinction ketween statements and
expressons.

Trandation Instead of Compilation

Maybe the most important charaderistic of STELLA that
distingushes it from other approaces to the problem of
Lisp-based applicaion generation and interoperability isits
trandation philosophy. One of the main design ga&s has
been to dlow a dired trandation into readalle,
conventiond, and efficient code of the various target



languages that can be @mpiled with conventional
compilers, since that achieves the highest degree of
platform independence ad interoperability with non
STELLA programs withou saaificing efficiency.
Readahbility is of primary concen, since it enables a
STELLA-illiterate gplicdion pogrammer to effedively
and efficiently integrate some mainstream appli caion with
a piece of Al tecdhndogy written in STELLA.
Conventional Lisp-to-C trandators are a1 inferior
aternative, since they use C more like a1 asembly
language which makes it difficult to accessand undbrstand
uncerlying data and control  structures. Integration
approaches based on foreign function interfaces or
protocols such as CORBA saaifice dficiency, since they
require data cnversions or various layers of protocol.

When a STELLA program is trandlated into Common
Lisp, C++, or Java, classes are mapped orto classs, dots
onto dots, methods onto methods, functions onto functions
(or static methods), etc. Native datatypes are used
whenever possble, for example, STELLA strings become
Lisp or C++ strings, integers are mapped orto integers, etc.
Thisisillustrated by Figure 2 which shows a very simple
STELLA function and its trandations into Common Lisp
and C++. Both trandations are very dired and straight-
forward. In the Common Lisp trandlation all functions used
from the Lisp padkage ae qualified with the CL padkage
prefix. Note, that for Lisp all type information is dropped
(at higher optimizaion levels ome type information is
retained — saaificing some readability - to provide
optimization hints to the Lisp compiler). The C++
trandation is even more similar to the original STELLA
code (the C++ pretty-printing in this and all following
examples has been changed dlightly to save verticd space.

Note, that both the return value and the parameter of
the STELLA function are eplicitly typed. Since STELLA
distingushes between statements and expressons (similar
to C++), the STELLA i f does nat return a value; hence,
function values are returned via explicit cdlstor et ur n.

The dired mapping between STELLA and the target
languages not only serves readability but also efficiency.
For example, in the C++ trandation function cdls do nd
require an extraindiredion througha function cdl, method
cdls use the very efficient C++ v-table mechanism, and
slot access is almost as efficient as the acces to locd
variables. These ae dl areas where the expressvenessand
dynamic nature of Common Lisp hasto be paid for with a
lossof efficiency.

The STELLA Type System

The most fundamental difference between STELLA and
Common Lisp is that STELLA is grondy typed. While
Common Lisp dees have afull-fledged and complex type
system, type dedarations for functions and veriables are
completely optional. Moreover, a Common Lisp compil er
isfreeto ignare ay user provided type dedarations, which
discourages programmers to provide them in the first place
(if they are not discouraged arealy by the somewhat

STELLA:
(defun (fact INTEGER) ((n INTEGER))
(if (=n 0)
(return 1)
(return (* n (fact (1- n))))))
Common Lisp:
(CL:defun fact (n)
(CL:if (CL:=n 0)
1
(CL:* n (fact (CL:1- n)))))
C++:
int fact(int n) {
if (n == 0) {
return (1);}
else {
return (n * fact(n - 1));}}

Figure 2: A simple STELL A function andits trandations

arcane dedaration syntax). Most Lisp programmers regard
the untyped nature of Common Lisp as a feaure that
fadlitates rapid prototyping and ory provide type
information if they hope for a particular optimization by
the compiler.

Since STELLA is aimed to be diredly trandatable
into strongy-typed languages sich as C++ or Java, it has
to have atype system that can be mapped more or less
diredly onto the type systems of these target languages.
Strong typing might seem unpelatable to many Lisp
programmers acaistomed to a programming style that does
not rely on explicit typing;, however, we will show that
STELLA’s sophisticated type system combined with its
type inference mechanism allows one to get away with a
minimum of explicit type dedarations while till reging
the safety and performance benefits of a strondy typed
language.

Types in STELLA can be caegorized into literal
types such as | NTEGER or STRI NG, and objed (or nor
literal) types such as OBJECT, LI ST, or SYMBOL. This
corresponds rougHy to the distinction between primitive
and reference types in Java. In the simplest case, a type
corresponds to a dass For example, the following class
definition creaes the type PERSON:

(defclass PERSON (OBJECT)
:documentation "The class of people.”
:slots ((name :type STRING)

(age :type INTEGER)
(father :type PERSON)
(mother :type PERSON)))

By convention, we upcase type names, even though this
usually does not matter, since by default STELLA is case-
insengitive. The class definition shown above uses a
nested keyword/value syntax similar to the def cl ass
maao o the Common Lisp Objed System (CLOS), but
with a different set of option keywords. It defines the new
class (or type) PERSON as a subclass of the dass
OBJECT. In fad, OBJECT is the top d the STELLA




objed type hierarchy, thus, every ohjed type used by
STELLA isasubtype of it. Every instance of PERSON has
exadly the storage slots shown above with their respedive
types (there ae no dots inherited from OBJECT). Here is
the C++ verson d this class to again illustrate the
readability of the trandation:

class Person : public Object {
// The class of people.
public:
char* name;
int age;
Person* father;
Person* mother;
public:
virtual Surrogate* primary_type(); };

Every class definition wualy aso generates various
auxiliary functions and methods such as the
primary_type method shown above which fadlitates
runtime type determination.

Apart from simple types such as PERSON, STELLA
also has parameterized and anchored types. Parameterized
types instantiate parameterized classes. This mechanism
provides akind d polymorphism that is commonly used to
implement generic containers, such as, for example, a list
datatype that can take abitrary elements of some
parameter type T. Instead of having to provide multiple
definitions for the mntainer class and its assciated
functions and methods — ore for ead individual element
type that is needed by a particular application —it suffices
to provide asingle parameterized definition. For example,
the STELLA kernel class LI ST which implements a
dynamic, singly-linked list datatype is defined as foll ows:

(defclass LIST (SEQUENCE)
:documentation "The class of singly-linked lists."
:parameters ((any-value :type OBJECT))
:slots ((the-cons-list
:type (CONS OF (LIKE (any-value self)))
:initially NIL)))

The : par anet er s keyword is used to parameterize a
classdefinition. In the given example, the dassLI ST has
one parameter with name any-val ue. Its type,
OBJECT, serves as a mnstraint on the parameter types that
can legaly instantiate the dass Parameterized types have
the syntax (T OF P, ... P.) where T is cdled the base type
and the P, are cdled the parameter types. Each parameter
type has to be asubtype of the type that constrains the
correspondng parameter. For example, the type (LI ST
OF PERSQON) is alega ingtantiation d LI ST. The base
type T can also be used by itself, in which cese the P, are
assumed to be of the type of the crrespondng class
parameter; thus, the type LI ST is equivalent to the
parameterized type (LIST OF OBJECT). A
parameter type can itself be parameterized, therefore
allowing arbitrarily nested type expressons.

STELLA lists smply add a header element to a more

low-level Lisp-style CONS-list which is gored in the slot
the-cons-1ist (the somewhat complicaed type
spedficaion d that dot will be explained shortly). Armed
with all that, we can nowv extend the PERSON class
defined above to also acourt for aperson’s shlings:

(defclass PERSON (OBJECT)
:documentation "The class of people.”
:slots ((name :type STRING)
(age :type INTEGER)
(father :type PERSON)])
(mother :type PERSON)
(siblings :type (LIST OF PERSON))))

Providing such detaled type information nd only
documents the intent of the programmer, it also enables the
STELLA trandator to verify the integrity of accesssto a
particular person's si blings dot. For example,
whenever anew sibling is added via a cdl to the STELLA
methodi nsert, the trandator can verify at compile time
whether the inserted element is indeed of type PERSON.
Conversely, whenever a sibling element is retrieved from
the list, the STELLA trandator knows that it has to be of
type PERSQN, and it can use that knowledge for type
inference and to generate the necessary type mnwersionsin
the target language.

The oncept of anchored types was borrowed from
Eiffdl (Meyer 1992. Anchored types can be used to
provide atype by padnting to the type of some other typed
entity (cdled the axchor) instead of explicitly dugdicaing
the achor's type information (this mechanism is
somewhat similar to symbdlic links in a file system).
Anchored types ®rve two main functions: (1) to avoid
redundant dupgicaion o type information (which
fadlitates code maintenance), and (2) to dedare
dependencies between types (which asgsts type inference).

Anchored types have the syntax (LI KE anchor)
where the syntax of anchor depends on the mntext of the
dedaration. For example, in the definition d the dass
LI ST given abowe, the type of the dlot t he- cons- | i st
uses an anchored type & a parameter type. The axchor
(any-val ue self) refers to the type of the dass
parameter any-val ue (sel f is a speda keyword that
refers to the dassin whose cntext the definition accurs).
Sincethe anchor points to a dassparameter, the parameter
type of t he-cons-1|i st gets effedively linked to the
parameter type of the LI ST class For example, when the
STELLA trandlator analyzes the expresson (t he- cons-
list (siblings p)) whichaccesssthe dott he-
cons-|ist of thesiblings list of some person p, it
caninfer that itstype must be (CONS OF PERSQN) .

Explicit, Implicit, and Inferred Types

In STELLA al globally visible type information o a
trandation urit such as a dass function, method, or global
variable has to be provided explicitly. This contracual
information Misible to the outside is often cdled an entity’s
signaure. For example, al of a function's argument and



return values have to be typed explicitly, al dots of a dass
have to be typed, etc.

The types of locd variables, on the other hand, can be
provided implicitly or by relying ontype inference If a
locd variable is nat typed explicitly, it is assumed to be of
the type of its initialization argument. For example: let us
assume that a person’s sblings are ordered from oldest to
youngest, and that a sufficiently fine-grained age
representation is used. Then the predicae below returns
trueif itsargument is afamily’ s first-born chil d:

(defun (first-born? BOOLEAN)] ((p PERSON))
:documentation "True if ‘p’ is a first-born child.”
(let ((s (siblings p))

(os (value (the-cons-list s))))
(return (or (null? os)
(> (age p) (age 0s))))))

Both locd variables s and os introduwced by the | et

statement above ae untyped, hence, STELLA implicitly
types them from their initialization arguments (note: the
STELLA | et initializes its variables ®quentialy similar
to the Common Lisp | et *). The type of s is assumed to
be (LI ST OF PERSQON), sincethat isthe type of the
si bl i ngs dot of a PERSON. The determination o the
type of os is dightly more complicaed. A STELLA
CONS- cdl has two dots, val ue and rest, which
correspond to the CAR and CDR of a Lisp cons-cdl. If
nothing else is known, the val ue slot of a CONS cdl is of
type OBJECT. However, in this case STELLA can adually
infer a narrower, more spedfic type than that. Remember,
that the type of the dlot t he-cons-1i st of the dass
LI ST defined above was anchored to the type of the dass
parameter; hence, the type of the expresson ('t he-

cons-list s) is infered to be (CONS OF
PERSQN) . The val ue dot of a CONS cdl is typed as
(LIKE (any-value self)), that is, it adso is
anchored to the parameter of its class thus, the type of the
expresson(val ue (the-cons-list s)) isinferred
to be PERSON which is the type STELLA asaumes for the
variable 0s. Here is how these types manifest themselves
in the C++ trandation:2

boolean first_bornP (Person* p) {
// True if ‘p’ is a first-born child.
{List* s = p->siblings;
Person* os = ((Person*)(s->the_cons_list->value));
return ((os == NULL) | | (p->age > os->age)); }}

In the trandation d s the parameter type information is
dropped. Instead, type information inferred by STELLA
but not available to C++ or Java is communicaed via
explicit, static type cats as used in the initialization d os.
This cast is necessary, since the type of the val ue dot as
known by C++ or Java is OBJECT. In C++ these cats do

2 |n the trandation o the function rame dharacers that are
illegal in C++ identifierswere replaced by legal substitutes.

not incur any runtime overhead, since we can trandate
STELLA clases into asingle, vi rt ual inheritance C++
classhierarchy. Unfortunately, Javais nat quite & trusting
and chedks casts at runtime for their validity (somewhat
similar to the runtime type chedingin Lisp). We do nd
yet know how much owerheal these runtime type cdeds
acdually incur, however, since Java ladks parametric types,
every use of a generic colledion dbta structure such as
Java's built-in vedors forces the programmer to use
explicit casts. For this resson, Java trandations of
STELLA code shoud na behave significantly different in
this resped than manually written Java mde.

For the sake of the example &owve, we exposed the
representation o the underlying list representation. A
better and more degant implementation would use only a
single locd variable aand STELLA’'s generic first
method to accessthe oldest sibling. This would then all ow
us to change the underlying representation o the
si bl i ngs dot, for example, to use avedor instead o a
list, without having to perform any maintenance on the
function first-born? at al. Besides relieving the
programmer from the burden of explicit typing, one of the
most important benefits of implicit typing and type
inference is its suppat for automatic software
maintenance. Since fewer types are atualy materialized
in the code, changing atype will syntadicdly affed fewer
places. In traditional languages, the same insulation can
only be atieved with help of user-defined “logicd” types.
The cared is that type changes can also indicae semantic
changes, in which case implicit typing can make it more
difficult to find al the dfeded places. Implicit typing and
type inference is also a aucial ingredient of STELLA’S
elegant iteration fadlity described below.

Implicit typing is not aways aufficient. For that case
STELLA | et dedarations do take an opiona type
argument that can be used to override an inferred type, or
to provide atype if a variable isinitialized to the typeless
NULL value.

Other Benefitsof the STELLA Type System

Besides aiding type dheding and efficient trandation, the
STELLA type system also provides various other benefits.
For example, in alanguage such as Jvathat does not have
parameterized types, the type cteds and explicit casts
generated by the STELLA trandator would have to be
performed manually by the programmer, which is tedious,
error prone, and leals to inefficient and herd to maintain
code (see (Myers, Bank, & Liskov 1997 for a discusson
of parameterized types, and hav they could be alded to
Java). In C++ we muld have used templates, but those
usualy implement genericity by code dugicaion, e.g., by
generating a different version o the fi rst method for
eat dfferent parameter type it is used on STELLA can
achieve the same dfed more degantly with oy a single
implementation o fi r st .

Even Common Lisp could benefit from parameterized
types, since there it is the sole resporsibility of the
programmer to verify that the type ontrad of the



si blings dot does not get violated. If she was not
caeful in ddng so, ghe will eventually be disciplined by
the Lisp debugger. As an added benefit, STELLA’s type
system fadlitates the generation d more dficient Lisp
code. As mentioned abowve, at higher optimizaion levels
the STELLA-to-Lisp trandator retains ome type
information to enable optimizaions by the Lisp compiler.
Lisp array accessand integer arithmetic can benefit grealy
from such dedarations, in particular, since the trandator
also types intermediate expressons which even type-aware
Lisp programmers often overlook.

The type system aso suppats automatic type
conversions that would otherwise have to be dore
tediously by hand. For example, literals such as numbers or
strings have to be wrapped (objedified) before they can be
stored in generic containers such as vedors or lists.
Becaise of the available type information, STELLA can
perform the necessary conversions fully automaticaly.

Iteration

STELLA has a powerful iteration fadlity that provides
efficient and extensible iteration ower arbitrary colledions
in a uniform syntax that is inspired by Common Lisp’s
| oop maao. For example, the following is a revised
version d the first-born? function that does not rely
onany ordering o the si bl i ngs dot:

boolean first_bornP (Person* p) {
{ Person* s = NULL;
Cons* iter_001 = p->siblings->the_cons_list;
while (!(iter_001 == NIL)) {
{ s = ((Person*)(iter_001->value));
iter 001 = iter_001->rest; }
if (s->age > p->age) {
return (FALSE); }}}
return (TRUE); }

The STELLA trandator optimizes iteration ower various
commonly used colledion data structures; hence the
generated iteration ower the underlying CONS-list data
structure is abou as efficient as one could write it by hand.
Note, how type inference is crucial here to automaticdly
type the loop \eriable and the helper variablei t er _001.
STELLA also suppats parallel iteration over two or more
colledions, colledion d results into a result list,
destructive modificaion d the underlying colledion data
structure, and the f oreach variants sone, exi sts,
and f or al | . For example, here is ancther version d the
functionfi r st - bor n?:

(defun (first-born? BOOLEAN)] ((p PERSON))
(return (not (exists s in (siblings p)
where (> (age s) (age p))))))

(defun (first-born? BOOLEAN) ((p PERSON))
(foreach s in (siblings p)
where (> (age s) (age p))
do (return FALSE))

(return TRUE))

This version is highly preferable over the previous one,
since it does not expose the representation of the
si bl i ngs dlot. The STELLA f or each uses a uniform
syntax for iteration regardlessof the type of the underlying
colledion. Such colledions can be lists, association lists,
strings, vedors, integer intervals, STELLA or user-defined
iterators, etc. This means that we uld change the
definition of the PERSON class to, for example, use a
vedor instead of alist representation for the si bl i ngs
slot, without having to adapt the function above. In this
resped the Common Lisp | oop maao is clealy inferior,
sinceit exposes the datatype of the underlying coll ecion by
requiring different keywords to indicae the wlledion type.
This is a cae where the ladk of type information in
Common Lisp compromises elegance & wel as
maintainability. The uniformity of foreach does not
affed the dficiency of the generated code. For example,
here isthe C++ trandation of the function above:

The generated iteration that implements the exi sts
predicae @owve is as efficient as the previously shown
f or each loop however, since the generated loop is a
statement rather than an expresson, it caana be a
argument to the r et ur n operator which expeds a value
returning expresson. To trandate this, STELLA uses a
spedal construct cdled VRLET (for value-returning | et )
which percolates the procedural code outwards, saves its
result value in a temporary variable, and folds the return
expresson inside. The resulting trandation is very
efficient, but it is not quite & close to the source @de &
was the cae in previous examples. This is one of the few
cases where readability of the generated trandation hes
been somewhat sacificed for the sake of expressveness

STELLA uses iterators to fadlitate iteration over
arbitrary data structures. A variety of built-in iterators are
provided, for example, the following loop iterates over all
clasesinamodde:

(foreach cl in (all-classes NULL TRUE)
do (print cl EOL))

Here is the arresponding C++ trandation which uses a
next ? method (trandated as next P) to bump the iterator,
and its val ue dot to access the arrent loop value
(iterators can have more than one value):

{ Class* cl = NULL;
Iterator* iter_029 = all classes(NULL, TRUE);
while (iter_029->nextP()) {
{ cl = ((Class*)(iter_029->value)); }
cout << cl << endl; }}




The iterator protocol is part of the STELLA languege
definition which enables the user to use standard
f or each-style iteration to iterate over arbitrary user-
defined data structures. If a foreach is used on a
colledion that is neither an iterator nor one of the built-in
STELLA colledions, a standard method al | ocat e-
iterator iscdled onit to convert it into an iterator.
This method can be spedalized by the user to alocae
iterators on any user-defined data structures.

Runtime Type I nference

Not aways is it posdble or convenient to rely on static
type information aone. In particular, the handing o
heterogeneous colledions is a somewhat thorny isaue in
staticdly typed languages such as C++, while it is rather
effortless in Common Lisp. Since such colledions are
sometimes nealed, e.g., to store the results of reading and
parsing wser inpu, STELLA provides a runtime type
system that can be used to determine objed types and
subtype relationships at runtime. A Lisp-like t ypecase
construct makes it particularly convenient to encode
spedalized processng based onan oljed’s type. Purists of
the objed-oriented programming persuasion might frown
upon such programming style, but we believe that the
resulting code is often cleaner and easier to understand
than equivalent code that relies olely on standard oljed-
oriented means auch as dynamic method dspatch. It also
allows one to avoid high-level cach-all methods which in
C++ are somewhat spaceinefficient, because of the nature
of its method dspatch mechanism.

Rapid Prototyping

Since eolutionary development is such an essentia
ingredient of Al programming, an important question to
answer is how well STELLA suppats this particular
programming style. One important contribution is how it
minimizes the nead for code maintenance For example, its
uniform iteration syntax allows one to experiment with
different colledion representations withou having to
maintain asociated iteration code. Its uniform syntax for
function cdl, method cdl, and dot access makes it
possble, for example, to change amethod into a function
or a storage slot into an access method withou having to
change aty o the cdl sites of the function a dot
(provided, the basic signature has not changed). In C++
thisisnot the cae, sinceit exposes the type of an entity by
the syntax that is used. Type inference dso plays an
important role by automaticdly maintaining the types of
locd variables. STELLA places minimal restrictions on the
placenent of dedarations by uilizing a two-pass
trandation scheme. This enables the programmer to
position definitions where they most naturaly belong,
withou having to use redundant forward dedarations. The
biggest suppat for rapid prototyping, however, comes
from leveraging existing Lisp development environment
techndogy which  provide powerful  hypercode

environments for incremental code development. In such
environments it is possble to incrementally define and
redefine STELLA functions and classes by piggybading
on the dynamic nature of Lisp, even thoughthis feaure is
not diredly addressed by the STELLA language itself.
STELLA providesaset of Lisp maaos for the definition o
functions, classes, etc. which cdl the STELLA translator
behind the scenes and then send the resulting translation to
the underlying Lisp system for evaluation a compilation.
This alows one to use the exad same incremental code
development processas is common for standard Lisp code,
such as evaluation a compilation from an editor buffer,
changing dfinitions onrthe-fly during debuggng, looking
up source ®de, automatic code indentation, etc. Once
development has completed, one can “push a button” to
generate afina C++ or Java prodwction version o the
program.

Discussion

To date we have written approximately 70000 lines of
STELLA code and successully released Common Lisp
and C++ versions of the knowledge representation system
that motivated the development of STELLA. We fed that
STELLA development is almost as effortless as Lisp
development, and that it would have been vastly more
difficult and tedious to write the system diredly in C++ or
Java. Maybe the most convincing evidence for the
readability of the trandated STELLA code is that we ae
able to use standard Lisp, C++ and Java debuggers and
inspedors to debug STELLA code and insped its data
structures. The safety benefits of the type system have
proven to ouweigh byfar the alditional burden it puts on
the programmer. Being bah veteran Lisp programmers, we
now missthe STELLA type system when we write the
occasional Lisp program diredly. On average, the C++
trandation d a STELLA program runs abou threeto five
times faster than its Lisp trandation which exeautes
rougHy isomorphic code. This geeal dfference is mainly
explained by the somewhat less efficient sot access and
method dspatch of CLOS. In fairnessto Lisp we have to
say that the nature of the Lisp trandations generated by
STELLA put it somewhat at a disadvantage compared to
programs that were written for Lisp dredly. The Java
trandations run abou as fast as Lisp, but the Java trand ator
has been completed ony recently, and we exped to be ale
to significantly improve the performance of the generated
code. The implementation o STELLA is fairly complete,
but a few fedures gill need finishing, and a few language
isaues gill neal to betidied up

Conclusion

STELLA demonstrates that it is possble to smoathly
integrate strong typing and the Lisp programming
paradigm. Apart from fadlit ating the trandation into ather
strongy-typed languages, the STELLA type system
combined with its type inference fadlity also provesto be



an important tool to aid the programmer in the process of
rapid development and maintenance of Al software. Many
of Common Lisp's fedures were found esentia to
symbalic programming and also made their way into
STELLA. Most prominently absent is Lisp's suppat for
dynamic redefinition, which mainly aids code development
(which is where it is also exploited for STELLA), but
rarely is neaded in afinished application.
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